RISC-V Unified Database [1]

Derek R. Hower!, Afonso Oliveira?

1Qualcomm Technologies, Inc.
2Synopsys, Inc.

Abstract

This work presents the RISC-V Unified Database (UDB), a step towards a unified, machine-readable source of
truth for the RISC-V Specification. Currently, the RISC-V specification (including both ratified and de-facto
parts) is scattered across multiple repositories and cloud storage files. Little of it is machine-readable, and in
many cases information is duplicated in error-prone ways. This presents a barrier to further RISC-V growth
as it is increasingly difficult to understand (and especially verify) the complex and growing specification. By
gathering the specification in a single database, UDB provides the means to quickly find information and to
generate artifacts directly from an authority. Towards that end, UDB currently includes over ten generators,
including ones that produce ISA manuals, instruction and CSR indices, and an Instruction Set Simulator (ISS)

— all from the same source. Though tremendous progress has been made in the last year, UDB is still a work in
progress, and we are actively looking for increased community participation.

Introduction

RISC-V has undergone an extraordinary transforma-
tion, evolving from an academic project with five foun-
dational extensions [2] into a global industry standard
featuring nearly 200 ratified extensions [3]. This rapid
growth has exposed challenges in the ecosystem’s in-
frastructure. Namely, the standard is scattered across
multiple repositories and cloud storage files, has in-
consistent style, and is not machine-readable — mak-
ing interpretation and verification labor-intensive and
error-prone. This puts RISC-V at risk of fragmenta-
tion from vendor incompatibility.

To address these systemic challenges, the RISC-V
Unified Database (UDB) contributes:

e A unified, machine-(and human-)readable source-
of-truth

e Cross-validation against established resources to
ensure data correctness

e A framework to generate artifacts directly from
the source-of-truth

e A mechanism to overlay customization on the
standard — true to RISC-V’s core — that allows
vendors to use the tool to generate artifacts for
their specific implementation.

UDB’s generated-from-the-source artifacts include,
but are not limited to, a complete ISA manual en-
hanced with an alphabetical list of all instructions,
CSRs, and extensions, a fast (comparable to Spike [4])
Instruction Set Simulator (ISS), and documentation
for commercial RISC-V custom extensions [5] using
the above-mentioned overlay mechanism.

UDB is gaining traction among industry leaders and
early adopters, including Qualcomm, Synopsys, and
the RISC-V’s Certification Steering Committee (CSC),

RISC-V Summit Europe, Paris, 12-15th May 2025

each of which leverage UDB’s capabilities to generate
tailored outputs with reduced effort and better results
compared to previous processes. As a result, UDB is
well-positioned to serve as the foundation for the next
generation of the RISC-V specification ecosystem.

Challenges with RISC-V
Specification Ecosystem

The RISC-V specification ecosystem currently relies
on multiple disconnected repositories and specification
formats. Additionally, key documents, such as the ISA
and assembly manuals, are written in AsciiDoc — a
format not meant for structured data capture — forcing
reliance on copy-pasting or rewriting for derivative
document generation and precluding data verification.

The intricate relationships between instructions, ex-
tensions, Control and Status Registers (CSRs), ar-
chitectural parameters (most of which are unnamed),
and profiles further amplify the complexity of this
challenges. Instructions belong to one (or more) exten-
sions, yet tracking which instructions are introduced,
modified, or forbidden across different extensions is
difficult. CSR interactions with specific extensions
and privilege levels are often unclear. Profiles group
extensions into structured subsets of the ISA, but the
lack of consistent cross-referencing makes it difficult to
determine which components apply to a given subset.

Version management further compounds this com-
plexity. A typical CPU design incorporates multiple ex-
tensions, each evolving independently as new versions
are ratified. For example, a current design may spec-
ify RV32IM_ZbalpO_Zbblp0_ZbslpO_Zicsr2p0, but
as the ecosystem progresses beyond “1.0” and “2.0”
versions, maintaining consistency across implementa-



tions and documentation will become more difficult.

All of this creates challenges for entire ecosystem.
For example, it’s difficult for vendor documentation
to stay up-to-date with the standard given the re-
liance on copy /paste. Tool developers (e.g., compilers)
must create and maintain their own machine-readable
representations. And implementations struggle to ver-
ify a core against documentation that is not easily
understood or referenced.

UDB Source-of-Truth

UDB structures information into extensions, instruc-
tions, CSRs, architectural parameters, profiles, and
certificates with unambiguous attributes and relation-
ships. Moreover, UDB allows users to create overlays
that enable customizations to the base specification,
but leave the base specification intact.

UDB data is represented in YAML using a strict
schema enforced by JSON Schema. YAML is machine-
readable, friendly for human consumption, and is sup-
ported by every mainstream programming language
from C to Python. Each component is structured
with attributes that define its properties and relation-
ships while maintaining modularity to allow entities
to be referenced, inherited, or extended without du-
plication. For example, instructions refer to defining
extensions, profiles include ISA extensions, and archi-
tectural parameters highlight implementation choices.
The schema supports versioning, dependency resolu-
tion, and formal descriptions, making it suitable for
generating structured documentation, generating and
configuring ISSs, and integrating with tools.

Table 1 compares UDB with the current approach.
While profile manuals and opcode databases existed
before, they were either incomplete or manually main-
tained. The instruction and CSR indices, which pro-
vide structured cross-referencing, were entirely absent
in previous documentation efforts but are now being
actively developed within UDB. By unifying these
outputs, UDB enhances clarity, accessibility, and long-
term maintainability across the ecosystem.

Data Status and Verification. UDB currently
includes encoding data for all ratified RISC-V instruc-
tions found in riscv-opcodes and the GNU and
LLVM toolchains. Formal execution semantics ex-
ist for the many extensions, though some notable ones,
like Vector (V) and Hypervisor (H), are missing, incom-
plete, or unverified. The UDB community is working
to fill these gaps, and funding has been identified.

UDB cross-verifies its data against existing de-
facto sources-of-truth. UDB’s encoding data is veri-
fied against riscv-opcodes. Paired with an existing
UDB generator that produces the same outputs as
riscv-opcodes, UDB is technically ready to supplant

Artifact Current UDB
ISA Manuals Prose Prose + Appendices
ISS / Formal Incomplete Generator complete,
model incomplete semantics
Opcode Incomplete Complete (superset of
Database riscv-opcodes)
Profile Manuals Prose Prose + Appendices
CSC Documents Using UDB -

Instruction Non-existent Complete
Index mnemonics/encoding,
Incomplete
semantics/descriptions
CSR Index Non-existent Incomplete

Table 1: Comparison of current RISC-V artifacts versus
UDB

the function of riscv-opcodes should the community
decide to move that direction.

UDB instruction data is also validated against the
information in LLVM’s instruction tables. We hope to
expand that work soon to include LLVM-compatible
disassembly information and relocation data. Ulti-
mately, we believe that UDB could serve as a source-
of-truth for generated LLVM artifacts.

Future Work / Call to Action!

UDB has been successfully bootstrapped and shows
a clear path forward, though challenges remain. The
community is working hard to fill data gaps and en-
hance the infrastructure. There is also an effort un-
derway to link UDB data to normative text in the
prose manuals, providing an auditable trail for the
data sources. We strive to advance UDB to the point
that it could eventually serve as the official source of
truth for the RISC-V specification and (generated) ar-
tifacts. The UDB community, like RISC-V as a whole,
strives to be open and collaborative, and we welcome
more contributors to our BSD-3-licensed project.

References

[1] Hower, Derek, et. al. The RISC-V Unified Database. URL:
https : / / github . com/ riscv - software - src / riscv -
unified-db.

[2] Andrew Waterman et al. “The RISC-V instruction set man-
ual, volume i: Base user-level isa”. In: EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011),
pp. 1-32.

[3] RISC-V International. The RISC-V Instruction Set Man-
ual, Volume I: Unprivileged ISA. Version 20240411.

[4] RISC-V Software Source. Spike RISC-V ISA Simulator.
2024. URL: https://github.com/riscv-software-src/
riscv-isa-sim.

[5] Albert Yosher and Derek Hower. Qualcomm uc extensions.
2025. URL: https://github.com/quic/riscv-unified-
db/releases/tag/Xqci-0.6.

RISC-V Summit Europe, Paris, 12-15th May 2025


https://github.com/riscv-software-src/riscv-unified-db
https://github.com/riscv-software-src/riscv-unified-db
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/quic/riscv-unified-db/releases/tag/Xqci-0.6
https://github.com/quic/riscv-unified-db/releases/tag/Xqci-0.6

	Introduction
	Challenges with RISC-V Specification Ecosystem
	UDB Source-of-Truth
	Future Work / Call to Action!

