Toffee: an Efficient and Flexible Python Testing
Framework for Chip Verification

April 21, 2025

Abstract

Functional verification in IC/ASIC projects typically accounts for up to 60% of the entire development efforts,
consuming a lot of resources. Furthermore, traditional verification methodologies are often disconnected from the
modern software ecosystem, making it difficult to utilize efficient testing tools and developers in software. This
happens mainly for two reasons: low coding efficiency and poor integration for software tools and developers.

In this paper, we propose a Python testing framework called TOFFEE. It introduces three key innovations:
asynchronous function modeling, which models hardware designs as software APIs using two types of async
functions; a hook-enabled reference model, which employ hooks for efficient communication; and a test-driven
execution strategy, allowing test cases to be managed by software testing frameworks. Ezperiments show that
most users can build their first verification environment within 1.8 to 9.8 hours and integrate well with software
testing tools. Additionally, TOFFEE can reduce the lines of code in the verification environment by up to 86.31%,

and cut execution time by up to 89.69%.

Introduction

Hardware verification plays a crucial role in the chip
development process, which can effectively avoid the
huge loss caused by the failure of the chip. Research
shows that verification accounts for 50 to 60 percent
of total development time in IC/ASIC projects. The
verification workforce has grown to nearly match the
number of design engineers, with ratios reaching as
high as 5:1 in certain market segments|[1l]. This sig-
nificant resource allocation has driven the industry to
persistently seek more efficient verification methodolo-
gies.

Verification frameworks have evolved from VMM
and OVM to the current UVM]2]. These frameworks
support verification engineers by defining standard
verification flows and offering reusable code libraries.
They are typically built on hardware verification lan-
guages (HVLs), such as SystemVerilog, and follow
early-stage programming and testing patterns. In con-
trast, the software development field has advanced
rapidly in recent years. software testing tools have
evolved a series of fascinating mechanisms to improve
testing efficiency and flexibility. For example, pytest|3]
can automatically detect and run test functions, re-
ducing the need for manual testing. This aligns with
agile development practices and helps increase devel-
opment speed through quick iterations. Moreover, a
survey[4] by StackOverflow shows that hardware de-
velopers make up only 0.3% of the total developer
population, much less than software developers. The
fast pace of new features and the large developer base
both highlight the greater activity and efficiency in
the software field.

RISC-V Summit Europe, Paris, 12-15th May 2025

Therefore, in this paper, we ask the question: can we
leverage modern programming practices and developer
resources in software field to improve the efficiency
of chip verification? In fact, there have already been
efforts in this direction. Cocotb[5] uses VPI to enable
simulation of the DUT (design under test) in Python.
Pyuvm|[6] ports UVM to Python, giving Python a
verification framework to support hardware verifica-
tion. However, pyuvm only translates UVM into a
different language, still requiring engineers to follow
the traditional paradigm. This leads to two main is-
sues: 1) Low coding efficiency. UVM environment
setup remains inherently complex. Even basic test-
benches often need more than ten components, making
it difficult to support rapid iteration and continuous
delivery common in software development. 2) Poor
integration with software tools and developers. Cur-
rent approaches use Python but still follow traditional
hardware verification logic. They are not integrated
with the software testing ecosystem and are difficult
for software developers to adopt.

To address these issues, we believe it is necessary
to design a new verification framework suited for the
software domain. This framework should support fast
iteration by making the test environment easier to
set up, and it should follow software development
conventions to lower the learning curve for software
developers. However, reaching this goal is challenging.
We identify three core parts that any verification en-
vironment must support: interaction, checking, and
testing. Each of these parts comes with a specific
challenge:

e C1 There is no efficient way in software field
to handle interaction between test cases and the



hardware design. (Interaction mechanism)

e C2 Existing methods for reference model commu-
nication are inflexible and involve complex inter-
faces. (Checking mechanism)

e C3 Hardware test cases cannot be managed by
software testing frameworks. (Testing mecha-

nism)

To address these challenges, we introduce TOFFEE,
a software testing framework designed for hardware
verification. TOFFEE’s verification environment is or-
ganized into three main components: the DUT proxy,
the model hub, and the test scenario layer, each sup-
porting one of the core functions of verification. In the
DUT proxy, we propose asynchronous function mod-
eling, which models hardware operations as simple
software APIs. This approach makes it easier for test
code to interact with the DUT (C1 addressed). In the
model hub, we introduce the hook-enabled reference
model, which offers a clean and flexible way to connect
reference models with the verification environment (C2
addressed). In the test scenario layer, we present a test-
driven execution strategy, allowing hardware test cases
to be fully managed by software testing frameworks
(C3 addressed). Results show that most users are able
to set up their first verification environment within 1.8
to 9.8 hours and give TOFFEE positive feedback for
its integration with software tools. TOFFEE reduces
the complexity of building verification environments,
cutting lines of code by up to 86.31%. Compared to
similar frameworks, it also reduces execution time by
up to 89.69%. TOFFEE provides an effective solution
to the problems of complex setup and limited support
for software testing tools and developers.

Overall, our work makes the following key contribu-
tions:

e We introduce asynchronous function modeling,
which abstracts complex hardware operations us-
ing two types of asynchronous functions. This
approach allows TOFFEE to bridge test code and
the DUT using a software-style method.

e We present the hook-enabled reference model,
which enables simple and effective communica-
tion with reference models, avoiding redundant
interface connections.

e We design the test-driven execution strategy,
which replaces the traditional pull model with
a push model. This shift gives control to the test
cases, aligns better with software testing practices,
and allows full integration with software testing
frameworks.

e We prototyped the TOFFEE framework using
Python, along with picker and pytest. With this
implementation, TOFFEE is capable of completing
full verification tasks.

Discussion

We began by identifying two major issues in existing
approaches: low coding efficiency and poor compati-
bility with software testing tools and developers. Has
TOFFEE addressed these problems effectively? For the
first issue, our evaluation shows that the LOC across
four case studies directly reflect TOFFEE’s improved
coding efficiency. Python naturally offers much higher
productivity than SystemVerilog, which is also evi-
dent in pyuvm having significantly fewer lines than
UVM using the same architecture. TOFFEE intro-
duces a new verification environment structure that
further enhances this efficiency. In the cases we tested,
TorFEE reduced LOC by up to 86.31%. Notably,
TOFFEE showed excellent performance in small envi-
ronments and maintained strong efficiency in larger
designs, demonstrating both flexibility and scalability.

For the second issue, feedback from eight partici-
pants with software backgrounds showed that TOFFEE
integrates well with software ecosystems. Most users
were able to set up their first verification environment
within 1.8 to 9.8 hours, and gave positive feedback on
its simplicity and software integration. Compared to
previous work, our ability to combine hardware verifi-
cation with tools like pytest and hypothesis marks a
major step forward. In terms of execution, TOFFEE
performs on par with UVM and even outperforms it
in some complex scenarios, making it more practical.
These results show that TOFFEE effectively addresses
both the efficiency and usability challenges found in
traditional frameworks.

References

[1] Siemens Verification Horizons Blog. Part 8: The 2022
Wilson Research Group Functional Verification Study. Ac-
cessed: 2024-11-20. 2024. URL: https://blogs . %20sw .
siemens . %20com/ %20verificationhorizons %20/ 2022/
12/12/part %20 - 8 - the - 2022 - wilson 20 - research -
group’20-functional-%20verification’20-study.

[2] Accellera Systems Initiative. Universal Verification
Methodology (UVM) 1.1 User’s Guide. Accessed: 2024-
11-20. 2011. URL: https://www.accellera.org/images/
downloads/standards/uvm/%20uvm¥%5C_users%5C_guide’
5C_1.1.pdf.

[3] pytest-dev. pytest. Accessed: 2024-11-20. 2024. URL: https:
//github.com/pytest-dev/pytest.

[4] Stack Overflow. 2024 Developer Survey. Accessed: 2025-4-
20. 2024. URL: https://survey.stackoverflow.co/2024/
developer-profile/.

[5] cocotb Developers. cocotb. 2024. URL: https://github.
com/cocotb/cocotb.

[6] pyuvm Developers. pyuvm. Accessed: 2024-11-20. 2024.
URL: https://github. com/pyuvm/pyuvm.

RISC-V Summit Europe, Paris, 12-15th May 2025


https://blogs.%20sw.siemens.%20com/%20verificationhorizons%20/2022/12/12/part%20-8-the-2022-wilson%20-research-group%20-functional-%20verification%20-study
https://blogs.%20sw.siemens.%20com/%20verificationhorizons%20/2022/12/12/part%20-8-the-2022-wilson%20-research-group%20-functional-%20verification%20-study
https://blogs.%20sw.siemens.%20com/%20verificationhorizons%20/2022/12/12/part%20-8-the-2022-wilson%20-research-group%20-functional-%20verification%20-study
https://blogs.%20sw.siemens.%20com/%20verificationhorizons%20/2022/12/12/part%20-8-the-2022-wilson%20-research-group%20-functional-%20verification%20-study
https://www.accellera.org/images/downloads/standards/uvm/%20uvm%5C_users%5C_guide%5C_1.1.pdf
https://www.accellera.org/images/downloads/standards/uvm/%20uvm%5C_users%5C_guide%5C_1.1.pdf
https://www.accellera.org/images/downloads/standards/uvm/%20uvm%5C_users%5C_guide%5C_1.1.pdf
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://survey.stackoverflow.co/2024/developer-profile/
https://survey.stackoverflow.co/2024/developer-profile/
https://github.com/cocotb/cocotb
https://github.com/cocotb/cocotb
https://github.com/pyuvm/pyuvm

	Introduction
	Discussion

