
Programming RISC-V accelerators via Fortran
Nick Brown (n.brown@epcc.ed.ac.uk) , Jake Davies

Why Fortran?

A wealth of RISC-V accelerator cards

1) Driven by OpenMP target offload

Starting to see a range of

accelerators built upon RISC-V.

Primarily designed for machine

learning workloads, compute

capabilities can be used for

scientific computing.

Arguably, accelerator cards built around RISC

-V are where we are going to first start

seeing RISC-V be adopted by HPC due to the

lower barrier to entry compared to CPU-

based RISC-V machines.

Fortran is the lingua franca of

scientific computing. A mix of

legacy and new HPC

applications are written in

Fortran.

To give you an idea, on ARCHER2 the UK national supercomputer:

• Around 60% of code running on the machine are written in Fortran

• Which account for approximately 62% of the machine’s overall runtime

• These use around 70% of the total energy consumed by the supercomputer

Tenstorrent example: Compilation flow driven by Fortan and OpenMP

Conclusions

2) Driven by Fortran intrinsics

We can’t expect HPC developers to come to us, we must go to them and

supporting technologies that they are familiar with and that require minimal

changes to their code is crucial!

We therefore care, not only about making Fortran codes run as fast as

possible but also in an energy efficient manner
Programming these is a major challenge as they all leverage bespoke APIs

and SDKs, HPC programmers are not going to port their codes!

Building upon MLIR and xDSL

MLIR is a composable compiler

ecosystem built upon Intermediate

Representation (IR) dialects and

transformations between them.

Promotes reuse of compiler

infrastructure. MLIR is nice, but a challenge is the

steep learning curve. xDSL is a fast

prototyping environment enabling

rapid exploration of compiler

techniques and approaches.

The LLVM Flang compiler

Flang is LLVM’s Fortran compiler and this leverages MLIR

by generating High Level Fortran Intermediate

Representation (HLFIR) and FIR. However, this IR is then

directly lowered to LLVM-IR rather than going via the rest

of the MLIR ecosystem.

In previous work we lowered HLFIR and FIR to the

standard MLIR dialects:

• Based on this, we can then lower the standard dialects to a range of RISC-V

accelerators not just for Fortran but for a range of other frontend languages

This is driven by Fortran code

decorated with OpenMP target

offload, or in-built Fortran

intrinsics which previous work

lowered to the Linalg dialect

Target offload regions and

applicable linalg operations

are split apart from the rest

of the IR

The rest of the code is compiled as

before and runs on the host, calling

into the host driver to launch on the

device

Ultimately, C++ with TT-Metal

is generated. Either through

our pipeline in xDSL (green) or

lowering from our TT-Metal

dialects into Tenstorrent’s

ttkernel and tt-mlir stack.

Our approach also generates

the required host code to drive

memory transfer and kernel

launching on the device. This is

integrated into the rest of the

host-side Fortran code.

subroutine saxpy(a, x, y, n)

 ...

 !$omp omp target parallel do

 !$omp& num_threads(20) simd simdlen(32)

 do i=1, n

 y(i) = a * x(i) + y(i)

 end do

 !$omp end target parallel do simd

end subroutine

OpenMP directives and attributes are used to tune the mapping of iterations to device:

• The parallel do directive splits loop iterations across Tensix cores, with the number of

cores to use provided by the num_threads attribute (or a default chosen).

• Within each Tensix core, the simd directive allocates loop iterations to SIMD lanes of the

SFPU, with the simdlen attribute controlling the number of lanes (or a default chosen).

Programmers can decorate loops via

OpenMP’s target offload directive to

run this loop on the accelerator.

• The compiler determines data

movement to and from the device.

• Generates necessary kernels for

data in, data our and compute.

integer :: data(100000), result, i

do i=1, 100000

 data(i)=i

end do

result=sum(data)

Execute this sun intrinsic

on the RISC-V accelerator

Our approach lowers applicable operations in the linalg dialect to the Tenstorrent dialects and RISC-V

accelerator, seamlessly offloading and accelerating these language built-ins.

This transformation is the

special part, transforming to

the form and layout required

for the target accelerator

Aim is to extend this to support a wide range of RISC-V accelerators

Intrinsics are built in functions provided by the

compiler, including mathematical support such as

matrix multiplication, dot product, matrix

transposition, reductions. They are used extensively in

HPC codes, and our previous work lowered them to

the linalg dialect.

https://xdsl.dev

From the programmer’s

perspective this is as hidden

as possible, with (almost)

everything happening behind

the scenes

