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Why Fortran? 
 

A wealth of RISC-V accelerator cards 
 

 

 

 

 

 

 

1) Driven by OpenMP target offload 
 

Starting to see a range of 

accelerators built upon RISC-V. 

Primarily designed for machine 

learning workloads, compute 

capabilities can be used for 

scientific computing. 

Arguably, accelerator cards built around RISC

-V are where we are going to first start 

seeing RISC-V be adopted by HPC due to the 

lower barrier to entry compared to CPU-

based RISC-V machines. 

Fortran is the lingua franca of 

scientific computing. A mix of 

legacy and new HPC 

applications are written in 

Fortran. 

To give you an idea, on ARCHER2 the UK national supercomputer: 

• Around 60% of code running on the machine are written in Fortran  

• Which account for approximately 62% of the machine’s overall runtime 

• These use around 70% of the total energy consumed by the supercomputer 

Tenstorrent example: Compilation flow driven by Fortan and OpenMP 
 

Conclusions 
 

2) Driven by Fortran intrinsics 
 

We can’t expect HPC developers to come to us, we must go to them and 

supporting technologies that they are familiar with and that require minimal 

changes to their code is crucial! 

We therefore care, not only about making Fortran codes run as fast as 

possible but also in an energy efficient manner 
Programming these is a major challenge as they all leverage bespoke APIs 

and SDKs, HPC programmers are not going to port their codes! 

Building upon MLIR and xDSL 
 

MLIR is a composable compiler 

ecosystem built upon Intermediate 

Representation (IR) dialects and 

transformations between them. 

Promotes reuse of compiler 

infrastructure. MLIR is nice, but a challenge is the 

steep learning curve. xDSL is a fast 

prototyping environment enabling 

rapid exploration of compiler 

techniques and approaches. 

The LLVM Flang compiler 
 

Flang is LLVM’s Fortran compiler and this leverages MLIR 

by generating High Level Fortran Intermediate 

Representation (HLFIR) and FIR. However, this IR is then 

directly lowered to LLVM-IR rather than going via the rest 

of the MLIR ecosystem. 

In previous work we lowered HLFIR and FIR to the 

standard MLIR dialects: 

• Based on this, we can then lower the standard dialects to a range of RISC-V 

accelerators not just for Fortran but for a range of other frontend languages 

This is driven by Fortran code 

decorated with OpenMP target 

offload, or in-built Fortran 

intrinsics which previous work 

lowered to the Linalg dialect 

Target offload regions and 

applicable linalg operations 

are split apart from the rest 

of the IR 

The rest of the code is compiled as 

before and runs on the host, calling 

into the host driver to launch on the 

device 

Ultimately, C++ with TT-Metal 

is generated. Either through 

our pipeline in xDSL (green) or 

lowering from our TT-Metal 

dialects into Tenstorrent’s 

ttkernel and tt-mlir stack. 

Our approach also generates 

the required host code to drive 

memory transfer and kernel 

launching on the device. This is 

integrated into the rest of the 

host-side Fortran code. 

subroutine saxpy(a, x, y, n) 

    ... 

    !$omp omp target parallel do 

    !$omp& num_threads(20) simd simdlen(32) 

    do i=1, n 

        y(i) = a * x(i) + y(i) 

    end do 

    !$omp end target parallel do simd   

end subroutine 

OpenMP directives and attributes are used to tune the mapping of iterations to device: 

• The parallel do directive splits loop iterations across Tensix cores, with the number of 

cores to use provided by the num_threads attribute (or a default chosen). 

• Within each Tensix core, the simd directive allocates loop iterations to SIMD lanes of the 

SFPU, with the simdlen attribute controlling the number of lanes (or a default chosen). 

Programmers can decorate loops via 

OpenMP’s target offload directive to 

run this loop on the accelerator.  

• The compiler determines data 

movement to and from the device. 

• Generates necessary kernels for 

data in, data our and compute. 

integer :: data(100000), result, i 

do i=1, 100000 

    data(i)=i 

end do 

result=sum(data) 

Execute this sun intrinsic 

on the RISC-V accelerator 

Our approach lowers applicable operations in the linalg dialect to the Tenstorrent dialects and RISC-V 

accelerator, seamlessly offloading and accelerating these language built-ins. 

This transformation is the 

special part, transforming to 

the form and layout required 

for the target accelerator 

Aim is to extend this to support a wide range of RISC-V accelerators 

Intrinsics are built in functions provided by the 

compiler, including mathematical support such as 

matrix multiplication, dot product, matrix 

transposition, reductions. They are used extensively in 

HPC codes, and our previous work lowered them to 

the linalg dialect. 

https://xdsl.dev 

From the programmer’s 

perspective this is as hidden 

as possible, with (almost) 

everything happening behind 

the scenes 


